Grand Test - IPP 180931

IBPS PO Preliminary Grand Test -IPP-180931 **HINTS & SOLUTIONS**

	Α	NSWER	KEY	
1. (3)	21. (2)	41. (2)	61. (2)	81. (4)
2. (3)	22. (1)	42. (2)	62. (5)	82. (1)
3. (4)	23. (1)	43. (4)	63. (4)	83. (1)
4. (5)	24. (5)	44. (1)	64. (2)	84. (1)
5. (5)	25. (4)	45. (1)	65. (4)	85. (4)
6. (2)	26. (4)	46. (2)	66. (1)	86. (1)
7. (4)	27. (1)	47. (2)	67. (4)	87. (3)
8. (1)	28. (2)	48. (2)	68. (4)	88. (3)
9. (3)	29. (5)	49. (4)	69. (3)	89. (2)
10. (5)	30. (3)	50. (1)	70. (4)	90. (1)
11. (2)	31. (1)	51. (2)	71. (5)	91. (3)
12. (5)	32. (5)	52. 4)	72. (5)	92. (3)
13. (3)	33. (4)	53. (5)	73. (4)	93. (2)
14. (1)	34. (1)	54. (2)	74. (3)	94. (3)
15. (4)	35. (2)	55. (1)	75. (2)	95. (1)
16. (2)	36. (2)	56. (2)	76. (1)	96. (2)
17. (2)	37. (5)	57. (3)	77. (2)	97. (5)
18. (1)	38. (2)	58. (1)	78. (4)	98. (2)
19. (3)	39. (3)	59. (1)	79. (2)	99. (1)
20. (3)	40. (4)	60. (2)	80. (4)	100. (5)

HINTS & SOLUTIONS

1. (3) 2. (3) 3. (4) 4. (5) 5. (5) 6. (2) 7. (4) 8. (1)

9. (3)

- 10. (5) 11-15. The proper sequence of sentences to form a meaningful
- 11. (2) 12. (5) 13. (3) 14. (1) 15. (4) 16. (2) 17. (2) 18. (1) 19. (3) 20. (3) 21. (2) 22. (1)

23. (1)

24. (5)

25. (4)

paragraph will be BDAEFC.

- 26. (4) 27.(1) 28. (2) 29. (5) 30. (3) $1. 3x^2 + 17x + 20 = 0$ 31.(1) or, $3x^2 + 5x + 12x + 20 = 0$ or, (x + 4)(3x + 5) = 0 $\therefore x = -4 \text{ or } \frac{-5}{3}$ II. $7y^2 + 5y - 2 = 0$ or, $7y^2 - 2y + 7y - 2 = 0$ or, (y + 1)(7y - 2) = 0Hence, x < y
- 1. $3x^2 = 24\%$ of 200 or, $3x^2 = 48$ 32. (5) $\therefore x = \pm 4$ II. y = 4 Hence, $x \le y$ 33. (4) $1. x^2 + 6x - 71 = 0$ or, (x-6)(x+12)=0x = 6 or -12II. $y^2 + 25y + 156 = 0$ or, (y + 12) (y + 13) = 0 \therefore y = -12 or -13

34.(1)

35. (2)

36. (2)

37. (5)

- Hence, x ≥ y $1.3x^2 + 17x + 20 = 0$ or, $x^2 + 16x + 64 = 0$ or, $(x + 8)^2 = 0$ ∴ x = 8 II. $2y^2 + 22y + 60 = 0$ or, $y^2 + 11y + 30 = 0$ or, (y + 5)(y + 6) = 0 $\therefore y = -5 \text{ or } -6$ Hence, x < y I. $6x^2 - 25x + 21 = 0$ or, $6x^2 - 18x - 7x + 21 = 0$
 - or, (x-3)(6x-7)=0 $\therefore x=3 \text{ or } \frac{7}{6}$ II. $6y^2 + 25y + 21 = 0$ or, $y^2 + 18y + 7y + 30 = 0$ or, (y + 3) (6y + 7) = 0 $\therefore y=-3 \text{ or } \frac{-7}{6}$ Hence, x > y
- 38. (2) 39. (3) 40. (4) 41.(2) Ratio of capitals of Prakash, Sunil and Anil = 11 :16.5 : 8.25 = 4 : 6 : 3 [Take common 2.75]

Grand Test - IPP 180931

Sum of ratio of capital = 4 + 6 + 3 = 1350% of Anil's share in the profit

$$= \frac{19.5 \times 3}{13} \times \frac{50}{100} = \text{Rs. } 2.25$$

42. (2) Total expenses =
$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{20}$$

= $\frac{20 + 10 + 5 + 2}{40} = \frac{37}{40}$

Saving = Rs. 900 Total monthly income

$$= \frac{\text{Savings}}{1 - \text{Total expenses}}$$

$$= \frac{900}{\left(1 - \frac{37}{40}\right)} = \frac{900}{3}$$

$$= \frac{900}{3} \times 40 = \text{Rs.} 12000$$

43. (4) Number of males in committee = 2 Number of females in committee = 1 Total number of ways = ${}^{5}C_{2} \times {}^{3}C_{1}$

required number =
$${}^{5}C_{2} \times {}^{3}C_{4}$$

= $\frac{5!}{2!(5-2)!} \times \frac{3!}{1!(3-1)!}$
 $\frac{5 \times 4 \times 3!}{2 \times 3!} \times \frac{3 \times 2!}{1 \times 2!}$
= $10 \times 3 = 30$

44. (1) Circumference of circular plot

$$= \frac{3300}{15} = 220 m$$
∴ $2\pi r = 220$

$$r = \frac{220}{2\pi} = \frac{220 \times 7}{2 \times 22} = 35 m$$
Area of the plot = πr^2

$$= \frac{22}{7} \times 35 \times 35$$

Cost of flooring of 1 sq m plot = Rs. 100 Cost of flowing of 3850 sqm plot

= 3850 × 100 = Rs. 385000

45. (1) First Method

1 Male = 2 Females

 $= 3850 \ sq$

8 males and 4 females = 20 females

After 2 days 4 males have left the work and 4 new females joined at their place

= 4 males + 8 females = 8 + 8 females = 16 females

 $M_1 = 20$ females; $D_1 = 6 - 2 = 4$ days

 $M_2 = 16$ females; $D_2 = ?$

 $M_1D_1 = M_2D_2$

 $20 \times 4 = 16 \times D_2$

$$D_2 = \frac{20 \times 4}{16}$$

 $D_2 = 5 \text{ days}$

Second Method

1 Male = 2 Female

(8 + 2) male does work in 1 day = $\frac{1}{2}$

1 male and his work in 1 day = $\frac{1}{60}$

8 males and 4 females did work in 2 days = 2 x $\frac{1}{6} = \frac{1}{3}$

After 2 days 4 males and 8 females or 4+4 males will be the work.

Remaining work = 1 - $\frac{1}{3}$ = $\frac{2}{3}$

Time taken to complete remaining work

$$60 \times \frac{2}{3} \times \frac{1}{8} = 5 \, days$$

50% × 22500 : 60% × 25600, 1125 : 1536 46. (2)

47.(2)

 $25\% \times 20500 + 10\% \times 25600$ 48. (2) $+31\% \times 22500 + 19\% \times 36400$ $=\frac{5125+2560+6975+6916}{5394}=5394$

 $(60\% \times 25600 - 50\% \times 22500)$ 49. (4) = 15360 - 11250 = 4110

 $31\% \times 25600 = 7936$ 50.(1)

% profit = 35% 51.(2)

Expenditure = income $\times \frac{100}{100 + \%P}$

Thus, $91.8 \times \frac{100}{135} = \text{Rs.}68 \text{lakh}$

$$\begin{split} &I_1 = E_1 \times \frac{100 + 30}{100} = E_1 \times 1.3 \\ &I_2 = E_2 \times 1.2 \\ &\underline{I_1} = \underbrace{E_1}_{E_2} \times \frac{1.3}{1.2} = \frac{6 \times 1.3}{5 \times 1.2} = \frac{78}{60} \\ &I_1 : I_2 = \frac{13}{10} = 13 : 10 \end{split}$$

53.(5) 54. (2)

Expenditure_A = $\frac{I}{1.2} = \frac{90}{1.2} = 7.5$ lakhs

Income_B = 90 * 1.35 = 135lakhs

Ratio =
$$\frac{135}{75} = \frac{9}{5}$$

55.(1) Let the expenditure be x.

Income =
$$x \times \frac{100 + 25}{100} = 1.25x$$

$$\therefore \% = \frac{x}{1.25x} \times 100 = \frac{100}{1.25} = 80\%$$

 $\times 2 - 20, \times 2 - 20, \times 2 - 20, \dots$ 56.(2)

57. (3)
$$\times (2^2 - 1), \times (3^2 - 1), \times (4^2 - 1),$$

$$\times (5^2 - 1), \times (6^2 - 1)...$$

 $\times 1 + 7, \times 2 + 14, \times 3 + 21, \times 4 + 28$ 58. (1)

 $\times 1 + 2, \times 2 + 4, \times 3 + 6, \times 4 + 8, \times 5 + 10...$ 59.(1)

60.(2)

 $?=\sqrt{289.19}\times(2.08)\div10.97$ 61.(2) $\approx 17 \times 2 \div 11 = 3.09 \approx 3$

Grand Test - IPP 180931

- $1884 \div 144.89 + 6.99 + (?)^2 = 69.09$ $\approx 1885 \div 145 + 7 + (?)^2 = 69$ $=13+7+(?)^2=69$ $(?)^2 = 49$ $\therefore ? = 7$
- ? = 142% of 649.98 + 77.07 63. (4) $\approx 142\% \text{ of } 650 + 77 = 923 + 77 = 1000$
- 64. (2) $? = 136 \div \left(\frac{3}{8} \times \frac{2}{7} \times \frac{5}{3}\right) = 136 \div \left(\frac{5}{28}\right)$ $=136 \times \frac{28}{5} \approx 27 \times 28 = 756 \approx 760$
- $? = \sqrt{36000} = \sqrt{3600} \times \sqrt{10}$ 65. (4) $=60 \times 3.16 = 189.73 \approx 190$
- 66. (1) 67. (4) 68. (4)
- 69. (3) 70. (4)
- There is no valid assumption of the information if there 71. (5) is no increase in noise pollution there is no need of the given information or survey.
- Increase in noise levels can prove harmful from the 72. (5) health prospective.
- 73. (4) Strict action against the violators can help to control the noise pollution.
- To minimize the difference between MGNREGA and 74. (3) minimum wages amendment in MGNREGA is required.
- MGNREGA provide employment to million of people in 75. (2) rural households for 100 days.
- 76. (1) Aman is in front of Pawan.
- 77. (2) Dhawan is the second host.
- Aman, Naman and Gagan sit on the same side. 78. (4)
- Aman and Naman sit between Dhawan and Gagan 79. (2)
- Pawan is 2nd right to Dhawan. 80. (4)
- E > B < Q = D81. (4) E > D Hence I does not follow $F \le B < Q = D$ F≤D Hence II does not follow.
- 82. (1) $E > B \ge F$ E > FHence I follows. $A \ge B < E$
- No relation between A and E 83. (1) $H > B \ge I$ H > IHence I follows. $G \ge H > B \ge I$ G≥I
- Hence II does not follow.
- 84. (1) $G \ge H > B$ G > BHence I follows $I \le B < H \le X$ I <X

- Hence II does not follows.
- 85. (4) $B = J \le O \le A$ $B \le A$ Hence I does not follow. $B = J \le O \le A$ J≤A Hence II does not follow.
- 86. (1) 87. (3)
- 88. (3)
- 89. (2)
- 90. (1) 91 - 95.

(Grand Mother)		(Grand Father)
(-)	$F \longleftrightarrow$	E (+)
(Mother)	Ψ	(Father)
(-)	$A \longleftrightarrow$	B (+)
	→ ↑ *	
	\downarrow	4
C (-)	D (-) G(-)
(Daughter)	(Daugh	ter) (Daughter)

	Cor.				
A	R				
В	Q				
C	Q				
D	P				
Е	Q				
F	P				
G	R				

- 91. (3)
- 92. (3)
- 93. (2)
- 94. (3)
- 95. (1)
- 96 100. always to be right = 4,9,3,2(i) right is also just = 9,7,6,5(ii) So, the code of right = 9 come to terms = 1,3,8(iii) terms are just = 0,1,6So, the code of terms = 1always is = 7,4....(iv)
 - From Eqs. (i) and (v), always = 4 From Eqs. (i) and (iii), to = 3
- 96. (2) The code of come = 8 because to = 3 and terms = 1
- 97 98. Explained with diagrams
- 97. (5)
- 98. (2)
- 99. (1)
- 100. (5) just